A single-phase epitaxially grown ferroelectric perovskite nitride

Songhee Choi, Qiao Jin, Xian Zi, Dongke Rong, Jie Fang, Jinfeng Zhang, Qinghua Zhang, Wei Li, Shuai Xu, Shengru Chen, Haitao Hong, Cui Ting, Qianying Wang, Gang Tang, Chen Ge, Can Wang, Zhiguo Chen, Lin Gu, Qian Li, Lingfei WangShanmin Wang, Jiawang Hong, Kuijuan Jin, Er Jia Guo

Research output: Contribution to journalArticlepeer-review

Abstract

The integration of ferroelectrics with semiconductors is crucial for developing functional devices, such as field-effect transistors, tunnel junctions, and nonvolatile memories. However, the synthesis of high-quality single-crystalline ferroelectric nitride perovskites has been limited, hindering a comprehensive understanding of their switching dynamics. Here we report the synthesis and characterizations of epitaxial single-phase ferroelectric cerium tantalum nitride (CeTaN3) on both oxides and semiconductors. The polar symmetry of CeTaN3 was confirmed by observing the atomic displacement of central ions relative to the center of the TaN6 octahedra, as well as through optical second harmonic generation. We observed switchable ferroelectric domains using piezoresponse force microscopy, complemented by the characterization of square-like polarization-electric field hysteresis loops. The remanent polarization of CeTaN3 reaches approximately 20 microcoulomb per square centimeter at room temperature, consistent with theoretical calculations. This work establishes a vital link between ferroelectric nitride perovskites and their practical applications, paving the way for next-generation information and energy storage devices.

Original languageEnglish
Pages (from-to)eadu6698
JournalScience advances
Volume11
Issue number32
DOIs
Publication statusPublished - 8 Aug 2025

Fingerprint

Dive into the research topics of 'A single-phase epitaxially grown ferroelectric perovskite nitride'. Together they form a unique fingerprint.

Cite this